Organism Interactions in Ecosystems

Have you ever grown a plant or taken care of a pet? If so, you know they have certain needs such as water or warmth. Plants need sunlight to grow. Animals need food and shelter. Plants and animals in an ecosystem, as organisms and as a larger population, depend on both with biotic and with abiotic factors to survive and multiply. If an organism’s needs are not met in an ecosystem, they might not survive. If a population’s needs are not met, a species may become threatened. Different organisms have different needs, but what are the basic requirements for all life?

Ecosystem
- all of the biotic and abiotic factors in an area, and the interactions among them

Population
- all the members of the one species living in a particular area at a particular time

Biotic
- all living or once living things in an ecosystem

Abiotic
- nonliving things in an ecosystem

Ecosystem organisms have needs.

Earth is diverse and includes many different ecosystems, both large and small. Organism in any ecosystem must have their basic needs met. Scientists have identified three main ecosystems:

<table>
<thead>
<tr>
<th>Aquatic Marine</th>
<th>Aquatic Freshwater</th>
<th>Terrestrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saltwater habitats such as oceans, seas, coral reefs, and salt marshes</td>
<td>Freshwater habitats such as ponds, lakes, streams, and rivers, swamps</td>
<td>Land habitats such as forests, grasslands, and deserts</td>
</tr>
</tbody>
</table>

Populations respond to factors in the biotic and abiotic environment that limit their size and growth. Examples of limiting factors include space, nutrients, predators, water, sunlight, and pathogens. The limiting factor for a specific species in a specific habitat is the resource that is most difficult for that species to get, such as water being the limiting factor for many plant species in the desert. Limiting factors limit the population of each species living in an ecosystem.
A Closer Look at Limiting Factors

Light: Plants need light to help them make food through the process of photosynthesis. Some plants need more light than others. They will grow poorly if there is not enough light. Other plants grow well in the shade and may not do as well with too much light. Animals also need light to help balance their wake and sleep cycles. Light from the Sun allows animals to see during the day; this helps them search for their food sources. Sunlight also provides energy in the form of heat to keep cold blooded organisms, such as reptiles, warm.

Water: Water is essential for life on Earth. All organisms need water to survive, but like light, the required amount varies among different organisms. For example, organisms in dry ecosystems do not need as much water as organisms in wet ecosystems. For example, a cactus can survive with very little water but a Cypress Tree will die if it does not have large amounts of water.

Shelter: Organisms need shelter that will protect them from harsh weather conditions. Some organisms also need protection from other organisms. For example, mice often seek shelter by burrowing in the ground to stay warm and to hide from predators. Many birds build nests high in the trees to provide a safe shelter and for their eggs.

Temperature: All organisms have a certain temperature range in which they can survive. Some organisms, such as polar bears, require cold climates while others, such as crocodiles, require warm climates. Some extreme organisms, such as archaea, can survive in temperatures of up to 93°C (200°F)! Some organisms can survive in a broad range of temperatures, while others are limited to a narrow range of temperatures.
Soil composition: Soil directly affects the types of organisms that live in an ecosystem. Certain plants require certain types of soil and will only grow in ecosystems that contain that soil. Compare a forest ecosystem to a desert ecosystem. The soil in a forest is moist and fertile. Therefore, an abundant variety of plants can live in the forest and support an abundant variety of animal species. On the other hand, the soil in a desert is dry and sandy. Only a narrow variety of plant species can survive in this type of soil, which in turn limits the number of animal species as well.

The carrying capacity \((K)\) is the maximum population size that can be supported in an ecosystem. **Limiting factors** determine the carrying capacity. Examples are low food supply and lack of space. When organisms confront limiting factors, they show limited growth (curve B). When competition for resources cause the growth rate to slow down, the population levels off. The red straight upper line on a growth curve is the carrying capacity. Carrying capacity is the number of organisms of a particular species or population that can survive with the amount of resources available in a particular ecosystem at a particular time.

Limiting factors determine the carrying capacity of a population. If no limiting factors exist, population can grow exponentially (curve A), as the population size increases, the growth rate also increases. What do you think is the shape of the growth curve where cities extend into rural countrysides?
In addition to abiotic (non-living) factors, there are biotic factors that affect an organism’s survival and an ecosystem’s overall populations. **Biotic factors** are the living factors in an environment and may include food sources and other populations.

Predator–prey interactions are an important biotic factor for both **predator** and prey populations. For example, if there are more prey available, predator numbers can increase since there is more available food. However, as predator numbers increase, prey numbers will tend to decrease because more of them are eaten. As prey numbers decrease, predator numbers also decrease because there is less food available. As you might have guessed, when predator numbers decrease, prey numbers increase because fewer of them are being eaten. Predator and prey numbers often follow these cyclic patterns over time.

Another important biotic factor is related to organisms that compete for resources. **Competition** occurs when more than one individual or population tries to use the same limited resource. If a lot of organisms compete for the same resources, it is difficult for each individual to obtain what they need. Only the organisms that can get the needed resources will survive. For example, if too many plants compete for sunlight in an ecosystem, only the plants that get enough sunlight will survive. You’ll learn more about competition later in the lesson.

What Do You Think?

Take a look at the photographs below. Describe some of the abiotic and biotic factors that each organism needs. How are these factors similar among the organisms? How are they different?

- **Abiotic:** shelter from cold and water
 - **Biotic:** fish to eat, a mate

- **Abiotic:** sunlight, water, and shelter
 - **Biotic:** desert animals need food and mates

- **Abiotic:** water for support, tropical temperatures
 - **Biotic:** food and protection from predators
Everyday Life: Choosing Plants for a Garden

When planting a garden, it is important to consider where you live. You should choose plants that do well in your environment. A good way to start is by using the USDA Plant Hardiness Zone maps. These maps are created by the United States Department of Agriculture and can typically be found on the Internet. The maps use average temperature ranges to help people figure out which zones they live in. Certain plants thrive in certain zones. You can go online to explore more about these maps.

It is also important to consider how much water is available during the year, either from rain or from **irrigation**. For example, if you live in an area that does not receive a lot of rainfall each year, choose plants that are adapted for drier environments. More local considerations include how much sun the garden area will receive, the soil quality, and whether wild animals are likely to get in and eat the plants. If you live in an area with a lot of deer, it’s best to avoid plants that deer are more likely to eat.

Two Species: Same Niche

The interactions among organisms in an ecosystem are complex. Many organisms depend on one another to survive, as is shown in **food webs** like the one to the left. If one part of a food web is disturbed, all of the other organisms are affected. For example, if the plants in a food web are destroyed, the animals that eat the plants will not survive. Like a chain reaction, all other animals that depend on the plant-eating animals will also find it difficult to survive.

As you have learned, competition also affects the individuals and populations in an ecosystem. One way that species reduce competition is by occupying a specific niche. (An organism’s **niche** is its role in an ecosystem.) For example, deer, rabbits, and chipmunks often live in the same ecosystem. They all feed on plants. However, each species occupies a different niche. Deer feed on leaves higher up on trees, rabbits eat low-lying grasses, and chipmunks eat acorns and other plant products.
Organism Interactions in Ecosystems

Reflect

Sometimes two species in the same ecosystem occupy the same niche. Let’s take a look at a specific example. Giraffes are browsers and live in an area called the African Savanna. They eat leaves from shrubs and trees rather than grasses. Giraffes tend to eat the leaves at the top of the trees. Giraffes also tend to eat during the cooler times of the day and are prey to lions. These characteristics are all part of the giraffe’s niche.

Giraffes are not the only browsers on the African Savanna; zebras share a similar niche. Overlapping niches lead to increased competition. In this case, the zebras and giraffes compete for the same food source. However, although their niches overlap, there are some differences. For example, giraffes eat the leaves at the top of the trees while the zebras eat the lower leaves and grasses. This decreases the level of competition for food. Competition between two different species is called interspecific competition. Intraspecific competition is competition within the same species. All the giraffes are competing for the same food source. Separating resources can help minimize competition. For example, males tip their heads upward when feeding, while females tip their heads downward. This allows male and female giraffes to divide resources so they are not competing as strongly. Many animals also divide resources by claiming territories. Animals defend their territories from any other animals that threaten the resources within their claimed territory.

Look Out!

Competition does not always lead to winners and losers. In some cases, one population in an ecosystem out-competes another, and the second population may become extinct. In many cases, however, both populations will survive. Either way, both populations will have decreased numbers because there are fewer resources available.

What Do You Think?

Take a look at the graph to the right. It shows the change in population size of two populations living in the same environment: rabbits and lynx. Lynx are a species of wild cats. Carefully analyze how the increase and decrease in population size of one affects the other. Does this graph show that these populations are competing for the same resources or that they are in a predator-prey relationship? Explain your reasoning.
What Do You Know?

Study each image in the left column of the chart. For each image, identify the resource that is being used by the organism(s). Then, determine whether the resource is abiotic or biotic. Finally, read each scenario in the final column of the chart. Predict how and why the scenario will affect parts of the ecosystem by filling in the blanks. Write all of your answers in the spaces provided.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Abiotic or Biotic?</th>
<th>Scenario</th>
</tr>
</thead>
</table>
| ![Buffalo Image] | | The population size of the buffalo increases dramatically.
The ____________ population will decrease because __________________. |
| ![Prairie Dog Image] | | A large number of prairie dogs moves into the ecosystem.
Competition for __________________ will increase because __________________. |
| ![Lion Image] | | The ecosystem experiences a drought and all of the water bodies dry up.
The lion population will ____________ because __________________. |
Interdependence in a Terrarium
To help your child learn about the interdependence of organisms, set up a terrarium. Begin by listing all of the abiotic and biotic factors you will use. Examples include soil, a living space (such as a glass tank), plants, air, water, sunlight, and possibly earthworms. Have your child classify each factor as abiotic or biotic. Then, have them write a summary of how the living things in the terrarium will use and depend on the nonliving things. For example, earthworms use soil for shelter and eat bacteria and other tiny organisms in the soil. If necessary, use the Internet or other resources to research an organism’s particular needs.

After discussing the components, gather the materials and set up the terrarium. Remind your child that the living things in the terrarium are not in their natural environment, so you will need to provide the living things with all of their required resources, such as water, light, and moderate temperatures. It is important to treat living things with care. Have your child observe and take care of the terrarium each day for several weeks. If the terrarium is going to be broken down at the end of the study, plants, earthworms, and even soil can typically be placed in a garden or wooded area outside. Please be sure the season is appropriate for the living things that are placed outside.

If setting up a terrarium is not possible, conduct the activity using computer-generated graphics or sketches. Your child should label all parts of the terrarium.

Here are some questions to discuss with your child:
- How is a terrarium similar to a natural ecosystem? How is it different?
- What resource(s) did you have to replenish in the terrarium? Were the resources biotic or abiotic? What would happen if you had not replaced those resources?
- Assuming you had earthworms in the terrarium, what would happen if you added a lot more of them? What if you added a different species that uses the same resources as the earthworms?